656 research outputs found

    The future of coral reefs subject to rapid climate change: Lessons from natural extreme environments

    Get PDF
    Global climate change and localized anthropogenic stressors are driving rapid declines in coral reef health. In vitro experiments have been fundamental in providing insight into how reef organisms will potentially respond to future climates. However, such experiments are inevitably limited in their ability to reproduce the complex interactions that govern reef systems. Studies examining coral communities that already persist under naturally-occurring extreme and marginal physicochemical conditions have therefore become increasingly popular to advance ecosystem scale predictions of future reef form and function, although no single site provides a perfect analog to future reefs. Here we review the current state of knowledge that exists on the distribution of corals in marginal and extreme environments, and geographic sites at the latitudinal extremes of reef growth, as well as a variety of shallow reef systems and reef-neighboring environments (including upwelling and CO 2 vent sites). We also conduct a synthesis of the abiotic data that have been collected at these systems, to provide the first collective assessment on the range of extreme conditions under which corals currently persist. We use the review and data synthesis to increase our understanding of the biological and ecological mechanisms that facilitate survival and success under sub-optimal physicochemical conditions. This comprehensive assessment can begin to: (i) highlight the extent of extreme abiotic scenarios under which corals can persist, (ii) explore whether there are commonalities in coral taxa able to persist in such extremes, (iii) provide evidence for key mechanisms required to support survival and/or persistence under sub-optimal environmental conditions, and (iv) evaluate the potential of current sub-optimal coral environments to act as potential refugia under changing environmental conditions. Such a collective approach is critical to better understand the future survival of corals in our changing environment. We finally outline priority areas for future research on extreme and marginal coral environments, and discuss the additional management options they may provide for corals through refuge or by providing genetic stocks of stress tolerant corals to support proactive management strategies

    Regional-scale vegetation heterogeneity in northeastern Patagonia: Environmental and spatial components

    Get PDF
    Our aim was to describe vegetation heterogeneity at a regional scale in northeastern Patagonia and to identify the environmental variables associated to it. The study area encompasses 13 144 km2 and is characterized by a mixture of species typical of Patagonian steppes and Monte Desert. We performed 48 vegetation relevés, which were randomly assigned to a training set and to a validation set (32 and 16 relevés, respectively). Training set was subjected to cluster analysis, which allowed the identification of two plant communities one related to Patagonian steppes and another to the Monte desert. We derived 3 attributes of the seasonal curve of the NDVI as indicators of ecosystem function: the seasonal amplitude (SA), the date of the maximum (DOM), and the large seasonal integral (LSI). We explored the relationship between NDVI attributes and communities by classification tree analysis. LSI was the strongest predictor among NDVI attributes, separating both communities without misclassification errors. Patagonian steppes occupy areas with higher LSI. The partial RDA analysis explained 38.1% of total data variation, of which 16.5% was ascribed to environment, 7.9% to space, and 13.7% to spatial component of environment. Patagonian steppes are closer to the coast, in areas exhibiting higher annual precipitation and lower annual temperature range than Monte deserts. Our results indicate the occurrence of two plant communities in the study area and highlight the significance of climatic variables to explain their spatial distribution. As most scenarios of future climate predict greater annual thermal amplitude in the study area, the limit between both communities could be displaced eastward

    Effect of the source charge on charged-beam interferometry

    Full text link
    We investigate quantal perturbations of the interferometric correlations of charged bosons by the Coulomb field of an instantaneous, charged source. The source charge increases the apparent source size by weakening the correlation at non-zero relative momenta. The effect is strongest for pairs with a small total momentum and is stronger for kaons than for pions of the same momenta. The experimental data currently available are well described by this effect without invoking Pratt's exploding source model. A simple expression is proposed to account for the effect.Comment: 9 pages TEX, 3 Postscript figures available at http://www.krl.caltech.edu/preprints/MAP.htm

    Hyperferritinemia and hypergammaglobulinemia predict the treatment response to standard therapy in autoimmune hepatitis.

    Get PDF
    Autoimmune hepatitis (AIH) is a chronic hepatitis with an increasing incidence. The majority of patients require life-long immunosuppression and incomplete treatment response is associated with a disease progression. An abnormal iron homeostasis or hyperferritinemia is associated with worse outcome in other chronic liver diseases and after liver transplantation. We assessed the capacity of baseline parameters including the iron status to predict the treatment response upon standard therapy in 109 patients with untreated AIH type 1 (AIH-1) in a retrospective single center study. Thereby, a hyperferritinemia (> 2.09 times upper limit of normal; Odds ratio (OR) = 8.82; 95% confidence interval (CI): 2.25-34.52) and lower immunoglobulins (<1.89 times upper limit of normal; OR = 6.78; CI: 1.87-24.59) at baseline were independently associated with the achievement of complete biochemical remission upon standard therapy. The predictive value increased when both variables were combined to a single treatment response score, when the cohort was randomly split into a training (area under the curve (AUC) = 0.749; CI 0.635-0.863) and internal validation cohort (AUC = 0.741; CI 0.558-0.924). Patients with a low treatment response score (<1) had significantly higher cumulative remission rates in the training (p<0.001) and the validation cohort (p = 0.024). The baseline hyperferritinemia was accompanied by a high serum iron, elevated transferrin saturations and mild hepatic iron depositions in the majority of patients. However, the abnormal iron status was quickly reversible under therapy. Mechanistically, the iron parameters were not stringently related to a hepatocellular damage. Ferritin rather seems deregulated from the master regulator hepcidin, which was down regulated, potentially mediated by the elevated hepatocyte growth factor. In conclusion, baseline levels of serum ferritin and immunoglobulins, which are part of the diagnostic work-up of AIH, can be used to predict the treatment response upon standard therapy in AIH-1, although confirmation from larger multicenter studies is pending

    Comprehensive analysis of Arabidopsis expression level polymorphisms with simple inheritance

    Get PDF
    In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5′ regulatory sequence variation in the corresponding genes is indeed increased. However, ∼42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL

    The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter

    Get PDF
    With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe its performance, focussing on the capability to detect halo dark matter particles via their annihilation into neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures. Talk presented at the 3rd International Symposium on Sources and Detection of Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199

    The STAR Time Projection Chamber: A Unique Tool for Studying High Multiplicity Events at RHIC

    Full text link
    The STAR Time Projection Chamber (TPC) is used to record collisions at the Relativistic Heavy Ion Collider (RHIC). The TPC is the central element in a suite of detectors that surrounds the interaction vertex. The TPC provides complete coverage around the beam-line, and provides complete tracking for charged particles within +- 1.8 units of pseudo-rapidity of the center-of-mass frame. Charged particles with momenta greater than 100 MeV/c are recorded. Multiplicities in excess of 3,000 tracks per event are routinely reconstructed in the software. The TPC measures 4 m in diameter by 4.2 m long, making it the largest TPC in the world.Comment: 28 pages, 11 figure

    The AMANDA Neutrino Telescope: Principle of Operation and First Results

    Get PDF
    AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic

    Search for Point Sources of High Energy Neutrinos with AMANDA

    Get PDF
    This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.
    corecore